References
Publications
Yeonghoon Jin, Hyung Suk Kim, Donggyun Lee, Chihaya Adachi, Seunghyup Yoo, and Kyoungsik Yu
The Journal of Physical Chemistry C 2024 128 (4), 1755-1761
https://doi.org/10.1021/acs.jpcc.3c06330
This study introduces a rigorous analysis comparing distributed and concentrated dipole models in organic thin films using angle-dependent photoluminescence, highlighting inaccuracies in TDM orientation assumptions for thick emitter layers. It emphasizes considering the spatial distribution of TDMs, especially as film thickness increases, for precise OLED optical design.
How Phelos was used
Phelos was utilized for optical characterization via angle-dependent photoluminescence spectroscopy, aligning experimental setups and validating the necessity of considering distributed dipole models for accurate TDM orientation analysis in thick films.
Binh Minh Nguyen, Markus Schmid, Johann Kirsch, Albin Cakaj, and Wolfgang Brütting
Chemistry of Materials 2023 35 (17), 7333-7343
DOI: 10.1021/acs.chemmater.3c01804
The research explores how four nonpolar dyes orient within neat films and doped guest-host systems in organic light-emitting diodes (OLEDs). It identifies shape anisotropy and the relationship between the substrate temperature during deposition and the system's glass transition temperature (Tg) as critical to the alignment of emissive transition dipoles. Notably, in mixed cohost systems with components of differing Tgs, the alignment may not align with the mixed host's effective Tg. The study also proposes using a molecule's principal moments of inertia to assess its reorientation resilience and aspect ratio to gauge shape anisotropy.
How Phelos was used
Angular-Dependent Photoluminescence measurements were performed with Phelos.
Park, Y., Lee, G.S., Lee, W. et al.
Sci Rep 13, 1369 (2023).
https://doi.org/10.1038/s41598-023-27487-6
Researchers have designed Ir(III)-based heteroleptic NIR materials for near-infrared organic light-emitting diodes (NIR OLEDs) with a focus on radiance capacity (RC) rather than just radiance. The emitters exhibit a highly oriented horizontal dipole ratio, short radiative lifetime, and extremely low turn-on voltage.
The device demonstrates a high RC of 720 mW/sr/m2/V, making it a standout performer among Ir(III)-based NIR OLEDs with similar emission peaks, and has potential applications in healthcare, authentication, and night vision displays.
Measurement of the angle dependent p‑polarized photoluminescent spectrum (ADPL). The emission layer was deposited on a bare 50 nm-thick glass substrate. Then, glass encapsulation was done in a nitrogen ( N2)-filled glove box to avoid degradation from the air. A full angle dependent p-polarized PL spectrum was obtained with the goniometer based motorized intensity measurement system Phelos.
Park, Y., Lee, G.S., Lee, W. et al.
Sci Rep 13, 1369 (2023).
https://doi.org/10.1038/s41598-023-27487-6
Researchers have developed new Ir(III)-based heteroleptic NIR materials for near-infrared organic light-emitting diodes (NIR OLEDs) with heavy metals, which have a highly oriented horizontal dipole ratio and short radiative lifetime. These emitters offer an extremely low turn-on voltage and high radiance capacity, making them suitable for various applications such as healthcare services, veil authentication, and night vision displays. This study demonstrates exceptional device performance among similar Ir(III)-based NIR OLEDs, which makes it a promising material for commercial applications.
Measurement of the angle dependent p-polarized photoluminescent spectrum (ADPL)
The emission layer was deposited on a bare 50 nm-thick glass substrate. Then, glass encapsulation was done in a nitrogen (N2)-filled glove box to avoid degradation from the air. A full angle dependent p-polarized PL spectrum was obtained with the goniometer based motorized intensity measurement system Phelos, Fluxim.
Liu, Y., Yang, J., Mao, Z., Ma, D., Wang, Y., Zhao, J., Su, S.-J., Chi, Z.,
Adv. Optical Mater. 2023, 2201695
DOI: 10.1002/adom.202201695
The article reports on the development of three thermally-activated delayed fluorescence (TADF) molecules with different donor-acceptor (D-A) frameworks, namely D-A, D-A-D, and D-A-A. The TADF molecules were evaluated for their photophysical and electroluminescence properties. The study found that the TADF molecule with the D-A-A framework achieved the best performance in terms of external quantum efficiency due to its low energy gap between singlet and triplet, effective reverse intersystem crossing, high photoluminescence quantum yield, and horizontal dipole ratio. The study provides insights into the design of efficient TADF emitters.
P-polarized angle-dependent light emissions of CBP doped films were measured by Fluxim using Phelos. Refractive index of the materials was measured by MEL broadband spectroscopic Mueller matrix ellipsometer or extracted by Setfos database. The light out-coupling efficiency of devices was simulated by Setfos.
Tommaso Marcato, Frank Krumeich, and Chih-Jen Shih
ACS Nano 2022 16 (11), 18459-18471
Tuning the transition dipole moment (TDM) orientation in low-dimensional semiconductors is of fundamental and practical interest, as it enables high-efficiency nanophotonics and light-emitting diodes. However, despite recent progress in nanomaterials physics and chemistry, material systems that allow continuous tuning of the TDM orientation remain rare.
Here, combining k-space photoluminescence spectroscopy and multiscale modeling, we demonstrate that the TDM orientation in lead halide perovskite (LHP) nanoplatelet (NPL) solids is largely confinement-tunable through the NPL geometry that regulates the anisotropy of Bloch states, dielectric confinement, and exciton fine structure.
The experimental data were evaluated with the software Setfos provided by Fluxim.
The angle-dependent PL of the NPL film was characterized using the commercial instrument Phelos (Fluxim Inc.) equipped with a spectrometer, a linear polarizer, and a cylindrical macro extractor lens.
M. Diethelm, A. Devižis, W.-H. Hu, T. Zhang, R. Furrer, C. Vael, S. Jenatsch, F. Nüesch, R. Hany
Adv. Funct. Mater. 2022, 32, 2203643. https://doi.org/10.1002/adfm.202203643
This research investigates the impact of electron and hole traps on the performance and lifespan of polymer light-emitting electrochemical cells (PLECs). The study aims to identify and analyze the role of these traps in PLECs, drawing parallels with their known impact on polymer light-emitting diodes (PLEDs).
The researchers fabricated PLECs using a super yellow (SY) polymer as the emitting material and employed various experimental techniques, including electrical driving and breaks, light irradiation, and long-term absorption and capacitance measurements. Optical and electrical simulations using Setfos provided further insights into device behavior.
The findings reveal that electron traps in PLECs share similar characteristics with those in PLEDs, suggesting a common origin in the semiconducting polymer. Notably, the study identifies two types of hole traps in PLECs: one type present in the intrinsic region, mirroring PLED behavior, and another type forming at the interface of the intrinsic and p-doped regions, specific to the PLEC architecture.
This research highlights the significant role of charge traps in limiting PLEC performance and longevity. The findings emphasize the need for strategies beyond conventional approaches to enhance PLEC stability, urging a focus on addressing the fundamental limitations posed by charge traps within the light-emitting polymer itself.
How Setfos Was Used
Setfos was used to perform optical and electrical simulations of the PLEC devices to better understand their properties, such as luminance versus emitter position.
How Paios Was Used
Paios was used to perform several different types of measurements on the PLEC devices:
Impedance measurements: Specifically, impedance measurements at 0 V with an alternating 70 mV signal were taken to determine the capacitance transients of the devices.
Current and light intensity transient measurements: The Paios measurement system was also used to measure how the current and light intensity changed over time. The light intensity was measured by using a photodiode to measure the photovoltage, and the relationship between the measured photovoltage and the corresponding radiance/luminance is explained in a different source.
How Phelos Was Used
Phelos was used to take angular-dependent electroluminescence (EL) measurements of the PLEC devices.
Aurimas Vyšniauskas, Simon Keegan, Kasparas Rakstys, Tobias Seewald, Vytautas Getautis, Lukas Schmidt-Mende, Azhar Fakharuddin
Organic Electronics, Volume 111, 2022, 106655, ISSN 1566-1199
doi.org/10.1016/j.orgel.2022.106655
Perovskite light emitting diodes (PeLEDs) have emerged as promising candidates for applications requiring visible and near-infrared emission.
In this work, the researchers demonstrate the importance of compositional tuning using three different 2D cations namely phenylethylammonium (PEA), its monofluorinated analogue FPEA and a custom-made bulkier cation BPEA containing an extra phenyl ring.
Their results show that the tuning of the ratio between 2D cation and the [PbX6]4- provides a trade-off between electrical transport in the device and the emission properties of the emissive layer.
Generally, a large excess of cations is required to enhance the external quantum efficiency (EQE) of PeLEDs. Among the various cations, FPEA leads to PeLEDs with the highest EQE up to 7.7%, while BPEA resulted in the smallest EQE.
External quantum efficiencies (EQEs), current density-voltage-luminance dependencies, electroluminescence spectra and lifetimes were measured using Fluxim’s Phelos angular luminescence spectrometer. EQE and lifetime measurements were performed at 1 mA current. EQE measurements were performed at a given current density to minimize time for characterisation and degradation of the device. Absorbance of the perovskite films were measured using Agilent Cary 5000 UV-Vis-NIR spectrometer.
Sudhir Kumar, Tommaso Marcato, Frank Krumeich, Yen-Ting Li, Yu-Cheng Chiu and Chih-Jen Shih
Nat Commun. (2022), 13, 2106
https://www.nature.com/articles/s41467-022-29812-5
The intrinsic light outcoupling efficiency of quantum dots remains considerably lower than the organic counterpart.
The authors, using the colloidal lead halide perovskite anisotropic nanocrystals (ANCs) as a model system, report a directed self-assembly approach to form an anisotropic nanocrystal superlattice of perovskite nanocrystals. The emission polarization in individual ANCs rescales the radiation from horizontal and vertical transition dipoles, effectively resulting in preferentially horizontal TDM orientation. The optimized single-junction QD LEDs showed peak external quantum efficiency of up to 24.96%, comparable to state-of-the-art organic LEDs.
Yungui Li, Naresh B. Kotadiya, Bas van der Zee, Paul W. M. Blom, and Gert-Jan A. H. Wetzelaer
Adv. Optical Mater. 2021, 2001812,
https://onlinelibrary.wiley.com/doi/full/10.1002/adom.202001812
The authors developed a numerical model to simulate the fraction of photons coupled to air for OLEDs with a broad recombination zone. The dipole orientation of the CzDBA neat film was determined with Phelos by fitting the angular dependence of photoluminescence with Setfos software from Fluxim.
Markus Regnat, Kurt P. Pernstich, Simon Züfle, and Beat Ruhstaller
ACS Applied Materials & Interfaces 10,31552 (2018)
https://doi.org/10.1021/acsami.8b09595
Abstract: From s-polarized, angle-dependent measurements of the electroluminescence spectra in a three-layer phosphorescent organic light-emitting diode, we calculate the exciton distribution inside the 35 nm thick emission layer. The shape of the exciton profile changes with the applied bias due to differing field dependencies of the electron and hole mobilities. A split emission zone with high exciton densities at both sides of the emission layer is obtained, which is explained by the presence of energy barriers and similar electron and hole mobilities. A peak in the transient electroluminescence signal after turn-off and the application of a reverse bias is identified as a signature of a split emission zone.
Markus Regnat, Kurt P. Pernstich, Beat Ruhstaller
Organic Electronics 70, 219-226 (2019)
https://doi.org/10.1016/j.orgel.2019.04.027
Abstract:
We present an electro-optical model of a three-layer phosphorescent OLED which accurately describes the measured current efficiency and transient electroluminescence decay for different biases. Central findings are a bias-dependent emission zone, which influences light outcoupling as well as exciton quenching, and the presence of strong triplet-polaron quenching even at low bias. The measured current efficiency initially increases up to 9 V before it decreases, where the increase is found to be caused by reduced triplet-polaron quenching with holes, while the decrease is caused by a reduced light outcoupling and increased triplet-triplet annihilation. The numerical model allows identifying the individual contributions of the exciton continuity equation and explains the electroluminescence decay, which deviates significantly from a mono-exponential decay due to the dominating influence of exciton generation and quenching after the external bias is removed.
Sandra Jenatsch, Markus Regnat, Roland Hany, Matthias Diethelm, Frank Alain Nüesch, and Beat Ruhstaller
ACS Photonics 5, 1591 (2018)
https://pubs.acs.org/doi/abs/10.1021/acsphotonics.8b00047
Abstract:Light-emitting electrochemical cells (LECs) are one of the simplest electroluminescent devices and consist of a single emissive organic/salt layer sandwiched between two electrodes. The unique attribute of an operated LEC is the development of a pdoped/ intrinsic/n-doped (p-i-n) structure in the active layer in which the doped regions allow for facile transport of electronic charges to the intrinsic region, where charge recombination and light emission occur. However, due to the complex and simultaneous motion of ionic and electronic charges, the examination of the p-i- n structure and the zone where the light is emitted (EZ) is challenging during operation. By analyzing incident photon-tocurrent conversion efficiency and angular emission measurements with optical simulations, and correlating the results with capacitance measurements, we are able to obtain a clear picture of the p-i-n situation and the EZ within the active layer of a sandwich-type LEC during operation. It is found that the p-doped zone grows to the center of the active layer while the EZ stays closer to the metal electrode and is unchanged over time. Furthermore, optical simulations reveal that the determined EZ limits the external quantum efficiency of the LEC by outcoupling efficiencies of less than 10%.
Markus Regnat
Dissertation, EFPL, 2019
https://infoscience.epfl.ch/record/270200?ln=en
The understanding of charge recombination and exciton dynamics and the determination of the position of light generation are essential for the fabrication of modern OLEDs and are the goal of this thesis. Therefore two different OLED types, phosphorescence-based OLEDs and state-of-the-art TADF exciplex host OLEDs incorporating a fluorescent emitter, are studied by electro-optical characterization and device modeling.
Markus Regnat, Kurt P. Pernstich, Kwon-Hyeon Kim, Jang-Joo Kim, Frank Nüesch, and Beat Ruhstaller
Adv. Electron. Mater. 1900804 (2019)
https://doi.org/10.1002/aelm.201900804
Fluorescence-based organic light-emitting diodes (OLEDs) using thermally activated delayed fluorescence (TADF) have increasingly attracted attention in research and industry. One method to implement TADF is based on an emitter layer composed of an exciplex host and a fluorescent dopant. Even though the experimental realization of this concept has demonstrated promising external quantum efficiencies, the full potential of this approach has not yet been assessed. To this end, a comprehensive electro-optical device model accounting for the full exciton dynamics including triplet harvesting and exciton quenching is presented. The model parameters are fitted to multiple output characteristics of an OLED comprising a TADF exciplex host with a fluorescent emitter, showing an external quantum efficiency of >10%. With the model at hand, an emission zone analysis and a parameter study are performed, and possible routes for further efficiency enhancement are presented.
Wei Li, Wenqi Li, Lin Gan, Mengke Li, Nan Zheng, Chengyun Ning, Dongcheng Chen, Yuan-Chun Wu, and Shi-Jian Su
ACS Appl. Mater. Interfaces 2020, 12, 2717-2723
http://dx.doi.org/10.1021/acsami.9b17585
A pivotal thermally activated delayed-fluorescence (TADF) emitter, DspiroAc-TRZ, was developed, and it exhibits greatly enhanced electroluminescence performance in nondoped organic light-emitting diodes (OLEDs) owing to the concurrent manipulation of aggregation behavior and monomolecular structure. The delicate nonplanar packing pattern in the DspiroAc-TRZ crystal can not only lead to highly efficient solid-state luminescence but also form a loose intermolecular packing pattern, greatly decreasing the HOMO or LUMO overlaps in dimers and shortening the triplet exciton diffusion length. In addition, the rigid donor and acceptor moieties in DspiroAc-TRZ can rigidify the molecular backbone, resulting in a tiny geometric vibrational relaxation in the excited state. Impressively, high photoluminescent quantum yields of 78.5 and 83.7% were achieved for the DspiroAc-TRZ single crystal and nondoped film. A high external quantum efficiency (EQE) of 25.7% was achieved in a nondoped sky-blue TADF OLED, which is higher than any reported EQE value of nondoped sky-blue TADF OLEDs so far.
Sudhir Kumar, Jakub Jagielski, Tommaso Marcato, Simon F. Solari, and Chih-Jen Shih
J. Phys. Chem. Lett. 2019, 10, 24, 7560-7567
https://doi.org/10.1021/acs.jpclett.9b02950
There has been a tremendous amount of interest in developing high-efficiency light-emitting diodes (LEDs) based on colloidal nanocrystals (NCs) of hybrid lead halide perovskites. Here, we systematically investigate the ligand effects on EL characteristics by tuning the hydrophobicity of primary alkylamine ligands used in NC synthesis. By increasing the ligand hydrophobicity, we find (i) a reduced NC size that induces a higher degree of quantum confinement, (ii) a shortened exciton lifetime that increases the photoluminescence quantum yield, (iii) a lowering of refractive index that increases the light outcoupling efficiency, and (iv) an increased thin-film resistivity. Accordingly, ligand engineering allows us to demonstrate high-performance green LEDs exhibiting a maximum external quantum efficiency up to 16.2%. The device operational lifetime, defined by the time lasted when the device luminance reduces to 85% of its initial value, LT85, reaches 243 min at an initial luminance of 516 cd m–2.
Matthias Diethelm, Andreas Schiller, Maciej Kawecki, Andrius Devižis, Balthasar Blülle, Sandra Jenatsch, Evelyne Knapp, Quirin Grossmann, Beat Ruhstaller, Frank Nüesch, and Roland Hany
Advanced Functional Materials 1906803 (2019)
https://doi.org/10.1002/adfm.201906803
In light‐emitting electrochemical cells (LECs), the position of the emission zone (EZ) is not predefined via a multilayer architecture design, but governed by a complex motion of electrical and ionic charges. As a result of the evolution of doped charge transport layers that enclose a dynamic intrinsic region until steady state is reached, the EZ is often dynamic during turn‐on. For thick sandwich polymer LECs, a continuous change of the emission color provides a direct visual indication of a moving EZ. Results from an optical and electrical analysis indicate that the intrinsic zone is narrow at early times, but starts to widen during operation, notably well before the electrical device optimum is reached. Results from numerical simulations demonstrate that the only precondition for this event to occur is that the mobilities of anions and cations are not equal, and the direction of the EZ shift dictates mobilitycat > mobilityan. Quantitative ion profiles reveal that the displacement of ions stops when the intrinsic zone stabilizes, confirming the relation between ion movement and EZ shift. Finally, simulations indicate that the experimental current peak for constant‐voltage operation is intrinsic and the subsequent decay does not result from degradation, as commonly stated.
Balthasar Blülle, Stéphane Altazin, Bérengère Frouin, Lidia Stepanova, Sandra Jenatsch, Beat Ruhstaller
SID 2019 DIGEST 50, 407 (2019)
https://doi.org/10.1002/sdtp.13285
Quantum dot (QD) enhanced LCDs are among today’s best-inclass displays exhibiting high brightness and large color gamut. In this presentation we focus on the underlying key mechanism of the embedded QD films, the down-conversion of light, and explore the optical characteristics of a state-of-the-art perovskite QD film by measuring its down-converting properties as a function of the viewing angle. The good agreement of the experimental results with simulations of the QD film indicates that computer aided parameter optimization can be key tool for engineering QD displays.
Rebecca Momper, Heng Zhang, Shuai Chen, Henry Halim, Ewald Johannes, Stoyan Yordanov, Daniele Braga, Balthasar Blülle, David Doblas, Tobias Kraus, Mischa Bonn, Hai I. Wang, and Andreas Riedinger
Nano Letters (2020)
https://pubs.acs.org/doi/10.1021/acs.nanolett.9b05270
Description:
The authors discover that collective nanoplatelets orientation in monolayers can be controlled kinetically by exploiting the solvent evaporation rate in self-assembly at liquid interfaces. The ability to kinetically control the assembly of nanoplatelets into ordered monolayers with tunable optical and electronic properties paves the way for new applications in optoelectronic devices.