Aeberhard, U., Natsch, N., Schneider, A., Zeder, S.J., Carrillo-Nuñez, H., Blülle, B. and Ruhstaller, B. (2024),
Sol. RRL 2400492.
https://doi.org/10.1002/solr.202400492
This research paper examines reverse-bias breakdown in all-perovskite tandem solar cells, particularly under partial shading conditions, and highlights how nonuniform active area quality, such as variations in mobile ion concentration, can impact their performance. The study uses a multi-scale simulation approach to demonstrate that an increase in mobile ion density significantly reduces the breakdown voltage and can lead to localized current hot spots in large-area modules. The authors suggest that these hot spots, caused by fluctuating mobile ion concentration, are potential degradation centers in the solar cells. They also suggest further investigation into factors like unintentional doping and additional breakdown mechanisms to better understand and improve the performance of these solar cells.
How SETFOS Was Used to Study Reverse-Bias Breakdown
The authors of the research paper use the device simulation tool SETFOS to perform cell-level simulations on all-perovskite tandem solar cells. Here's a breakdown of its role:
Drift-diffusion Simulation: SETFOS is used to simulate the behavior of charge carriers within the solar cell under a large reverse-bias voltage. This helps researchers visualize the band profile, or the energy levels of electrons within the device's various layers.
Mobile Ion Consideration: The simulations in SETFOS incorporate the effects of mobile ions within the perovskite layer, a crucial aspect that influences the breakdown voltage.
Coupling with Quantum Transport Simulation: The data from SETFOS, including the band profile and quasi-Fermi levels, are then used as input for a separate quantum transport simulation tool, PVnegf. This allows for a microscopic examination of the tunneling breakdown current.
Iterative Analysis: The tunnel generation rates, calculated in PVnegf, are fed back into SETFOS. This iterative process, with information exchanged between SETFOS and PVnegf, continues until the tunneling current converges, providing an accurate representation of the breakdown phenomenon.
Generating JV Curves: Through this coupled simulation approach, SETFOS ultimately helps generate current density-voltage (JV) curves for the all-perovskite tandem solar cell, even under reverse-bias conditions. These JV curves are essential for understanding how the device performs near its breakdown voltage.
In summary, SETFOS acts as the foundation for the cell-level simulations, providing crucial data about charge transport and mobile ion behavior, which is then combined with quantum transport calculations to comprehensively study reverse-bias breakdown in all-perovskite tandem solar cells.
Using Laoss to Simulate Large-Area Solar Module Behavior
The authors use Laoss, a large-area thin-film electronics modeling tool, to understand how the performance variations observed at the cell level translate to the behavior of a complete solar module12.
Here's a breakdown of its use:
Quasi-3D Module Simulation: Laoss enables a "2D+1D" simulation approach, treating the top and bottom electrodes with a 2D finite element method (FEM) while using a 1D coupling law to represent the vertical current flow through the active area of the solar cells within the module3.
Incorporating Cell-Level Data: The JV curves generated in SETFOS, which incorporate the effects of varying mobile ion densities and reverse-bias breakdown, are used as input for Laoss1. These curves act as the local 1D coupling law within the module simulation, linking the 2D electrode simulations3.
Module Design and Interconnection: The researchers incorporate design parameters of a real all-perovskite tandem module into the Laoss simulation. These parameters, taken from a previously calibrated model4, include sheet resistances of electrodes, scribe line geometries for monolithic interconnection, and the Ohmic properties of the P2 scribe2.
Spatial Resolution: Laoss simulates a 10 cm x 10 cm module with a spatial resolution of 3 x 30 pixels per cell stripe, totaling 900 pixels. Each pixel is randomly assigned a JV curve based on a Gaussian distribution of mobile ion concentrations, representing real-world variations in manufacturing2.
Partial Shading Analysis: The study simulates both full and partial shading conditions on a single cell stripe within the module using Laoss5. This allows the authors to observe how variations in mobile ion density (and thus, breakdown voltage) at the pixel level affect current flow and hot spot formation under these conditions6.
In essence, Laoss allows the researchers to scale up their analysis from the behavior of individual solar cells to a complete module, taking into account the realistic variations in properties and the effects of partial shading. This multi-scale approach, linking the detailed device physics simulated in SETFOS to the module-level performance predicted by Laoss, provides a powerful tool for understanding and mitigating potential degradation mechanisms in all-perovskite tandem solar cells.
Our team purchased the optical and electrical modules of Setfos in July 2020. The operation interface of the software is intuitive, friendly, and easy to operate. The software itself contains rich information within a large material database. In the OLED device simulation process, we can simulate the emission spectrum of OLED, and simultaneously the recombination zone of charge transfer and drift spread. It can also help us to modify the design of device structure and can effectively analyze and improve the OLED device efficiency. The results calculated by Setfos could be served as a good reference point for our scientific research. We would highly recommend you consider Setfos as the option.
Dr. Ding, OLED simulation team, Ningbo Research Institute, China