Enhancing the Performance of 2D Tin-Based Pure Red Perovskite Light-Emitting Diodes through the Synergistic Effect of Natural Antioxidants and Cyclic Molecular Additives
C.-H. Chen, M.-H. Yu, Y.-Y. Wang, Y.-C. Tseng, I. Chao, I. Ni, B.-H. Lin, Y.-J. Lu, C.-C. Chueh,
Small 2024, 2307774.
https://doi.org/10.1002/smll.202307774
This paper presents a method to significantly enhance the performance of 2D tin-based red perovskite LEDs through the use of natural antioxidants and cyclic molecular additives, particularly ascorbic acid and 18-Crown-6. These additives mitigate the oxidation of Sn2+ to Sn4+ and improve film quality, leading to a substantial increase in external quantum efficiency (EQE), purer color, and better bias stability. The study showcases a potential dual-additive approach for advancing 2D Sn-based perovskite LEDs towards sustainability and efficiency.
How Paios was used
Paios was utilized for comprehensive electrical characterization, including space-charge-limited current measurements, electrochemical impedance spectroscopy, capacitance-voltage analysis, and transient electroluminescence studies. These tests revealed that the additives effectively reduced trap densities and leakage currents, improved carrier transport, and enhanced charge transfer efficiency, corroborating the additives' impact on device performance and stability.